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The flow of a sediment layer that forms on an inclined plate as a consequence of the 
steady sedimentation of spherical particles was investigated theoretically as well as 
experimentally. The theoretical analysis was based on the model proposed by Nir & 
Acrivos (1990), modified to include shear-induced diffusion due to gradients in the 
shear stress as well as a slip velocity along the wall due to the finite size of the particles. 
The resulting set of partial differential equations, which is amenable to a similarity-type 
solution both near the leading edge as well as far downstream, was solved numerically 
using a finite difference scheme thereby yielding theoretical predictions for the particle 
concentration and velocity profiles, plus the local sediment layer thickness, all along 
the plate. In addition, a new experimental technique based on laser Doppler 
anemometry was developed and was used to measure the particle velocity profiles in the 
highly concentrated sediment layer as well as the corresponding slip coefficient which 
relates the slip velocity to the velocity gradient adjacent to a wall. The thickness profile 
of the sediment layer was also measured experimentally by means of video imaging. It 
was found that the experimental results thus obtained for the particle velocity profile 
and for the local sediment layer thickness were in very good agreement with the 
corresponding theoretical predictions especially considering that the latter did not 
make use of any adjustable parameters. 

1. Introduction 
The separation of solid particles from liquids by means of gravity settling constitutes 

an important physical step in many chemical industries. This process is often slow and 
requires large vessels especially when the particles are small and the fluid is viscous. It 
has been shown, however, that the settling process can be enhanced by employing 
vessels with inclined walls which, for an equivalent rate of production of sediment or 
of clear fluid, typically occupy considerably less space than their vertical counterparts. 
These settlers, often called supersettlers, make use of closely spaced parallel plates. 

The different regions of the flow field in a typical parallel plate inclined settler are 
illustrated in figure 1. Region B depicts the clear fluid layer formed underneath the 
downward facing surface which, under the action of buoyancy, is convected rapidly 
towards the top of the vessel into the clear fluid reservoir A. The interface C separates 
the clear fluid layer from the adjoining suspension region D, within which the particle 
concentration remains constant throughout the sedimentation process. In addition, 
since both the clear fluid and the particles are incompressible, the production of 

t Present address: Molten Metal Technology, Inc., 51 Sawyer Rd, Waltham, MA 02154, USA. 
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FIGURE 1. A schematic description of an inclined settler. A: clear fluid reservoir, B: clear fluid 
layer, C :  suspension-clear fluid interface, D : suspension, E: sediment layer. 

clarified fluid must be accompanied by the removal of an equivalent amount of 
particles from the suspension. This occurs along the upward facing surface, where a 
thin layer of sediment, shown as region E in figure 1, is formed which flows down the 
inclined plate. 

A number of studies (e.g. Acrivos & Herbolzheimer 1979; Herbolzheimer & Acrivos 
1981; Schneider 1982; Rubinstein 1980; Probstein, Yung & Hicks 1981; Leung & 
Probstein 1983 ; Shaqfeh & Acrivos 1986, 1987) have already examined theoretically 
the flow fields within the various regions of the inclined settlers and several analytic 
expressions for the velocity profiles within the clear fluid layer underneath the 
downward facing wall and within the adjoining suspension have been developed for a 
wide range of parameters. The formation and flow of the sediment layer on the upward 
facing surface was neglected, however, in most of these studies except by Probstein et 
al. (1981) and by h u n g  & Probstein (1983), who treated the sediment as an effective 
Newtonian fluid of a priori specified composition. But since no theory was available at 
that time for determining the particle concentration within the flowing concentrated 
sediment, such a model required the use of an adjustable parameter. 

Recently, this limitation was overcome by Nir & Acrivos (1990) who, using again a 
continuum description, proposed a model to describe the flow of the sediment layer 
that forms as a result of steady sedimentation on an inclined plate. This also 
corresponds to the flow which develops on the upward facing surface of a ‘low aspect 
ratio’ inclined settler. The key feature of this model, which does not require any 
adjustable parameters, is the introduction of an equation for the particle concentration 
distribution involving a balance between particle convection due to the bulk flow, 
gravitational sedimentation, and shear-induced migration. The latter, which arises as 
a consequence of irreversible interparticle interactions, has been found recently to play 
a major role in creating the non-uniform particle concentration distributions observed 
experimentally in suspensions undergoing shear (Leighton & Acrivos 1986, 1987a, b; 
Phillips, Armstrong & Brown 1992; Koh 1991 ; Koh, Hookham & Leal 1994) as well 
as in the corresponding computer simulation studies (Brady & Bossis 1988; Durlofsky 
& Brady 1989). A key prediction of the model developed by Nir & Acrivos (1990) was 
that the particle concentration changes discontinuously across a sharp interface 
separating the suspension from the thin highly concentrated sediment layer. In 
addition, Nir & Acrivos (1990) found that the highest particle volume fraction within 
the sediment layer for a given angle of inclination approached the maximum possible 
value &, above which the sediment is unable to flow, when the particle volume 



Sediment flow in tanks with inclined walls 41 

fraction in the sedimenting suspension (#& was either very high or very low and that 
the sediment layer thickness (i) was predicted to become very large under these 
conditions. But since it is natural to expect that s" should vanish as #s+O, the 
theoretically predicted large values of if for dilute sedimenting suspensions clearly 
reflects the limitations of their model. 

The aim of the present paper is then to modify the model proposed by Nir & Acrivos 
(1990) in order to remove this anomalous prediction and test its applicability in a low 
aspect ratio inclined settler by means of experiments. There are of course several 
limitations to this model, primarily due to its use of the continuum description. In the 
present work, however, we shall focus our attention to two factors that may 
significantly affect the flow field within the flowing sediment layer and which were not 
considered by these investigators. First, we shall take into account the existence of an 
apparent slip velocity along the upward facing surface of the inclined settler arising 
from the fact that, in concentrated suspensions of finite-size particles flowing past a 
solid surface, there exists a thin film of liquid having a thickness comparable to the 
particle diameter within which particles may roll. As will be shown, such slip velocities 
at the plate can attain significant values. In addition, we shall introduce into the 
analysis the effect of particle migrations from regions of high shear stress to low 
(Leighton & Acrivos 1987 b), which could contribute significantly to the shear-induced 
resuspension of particles since, according to the predictions of Nir & Acrivos (1990), 
large shear stress gradients can exist within the flowing sediment layer. This will be in 
addition to the term contributing to the particle diffusive flux due to a concentration 
gradient already accounted for by these investigators. As will be seen, the theoretical 
results for low values of the sedimenting suspension volume fraction q5s are greatly 
affected by the introduction of these two effects, in that, as expected on physical 
grounds and in contrast to the result arrived at by Nir & Acrivos (1990), 6"is now found 
to vanish as #8 +. 0. 

The predictions based on this modified theory were tested experimentally by 
measuring the sediment layer thickness profile and the particle velocity profile within 
a sediment layer flowing in a low aspect ratio inclined settler. Such particle velocity 
profiles are extremely difficult to determine, in general, primarily due to the small layer 
thickness and the high volume fractions usually encountered within the sediment. We 
shall presently demonstrate, however, that this can be accomplished by first matching 
the refractive indices of the particles with that of the suspending fluid and then 
adapting the well known laser Doppler anemometry (LDA) technique to such systems. 
As for the sediment layer thickness, this was measured readily via a video image. 

We begin by describing briefly the equations governing the motion of the flowing 
sediment layer together with the partial slip boundary condition at the plate and shall 
show that, in the limit of infinitesimally small particle Reynolds numbers, these 
equations are amenable to a leading-edge similarity solution. Next, we shall present the 
solution of these equations obtained via a finite difference scheme and shall demonstrate 
that, far away from the leading edge, the slip velocity at the inclined plate has a 
negligible effect on the flow and that a similarity solution is recovered similar to that 
found by Nir & Acrivos (1990). Then, in 84 we shall discuss the details of the measuring 
technique and of the experimental set-up that was used to perform the experiments, 
and, in $ 5 ,  we shall show that the experimentally obtained sediment layer thicknesses 
and velocity profiles are in good agreement with the corresponding theoretical 
predictions presented in $3 in spite of the absence of any adjustable parameters in the 
theoretical model. Finally, we shall present in the Appendix a simple method for 
solving approximately the system of equations and boundary conditions developed in 
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§2 which, in some cases, was found to yield results in good agreement with those from 
the exact solution. 

2. Formulation 
Consider the simple two-dimensional system shown in figure 2, consisting of a 

surface of infinite length and arbitrary width, inclined at an angle 8 to the horizontal 
and placed in an infinite suspension of heavy spheres of radius a". The volume fraction 
of particles far from the plate, also referred to as the feed particle concentration, will 
be denoted by #8. 

The suspension is modelled as an effective Newtonian fluid with effective physical 
properties which, relative to the corresponding properties of the suspending liquid, are 
functions only of the local volume fraction of the particles. Thus, the effective density 
is expressed as 

and the effective viscosity as 

where # denotes the local volume fraction of the particles, the tilde indicates that the 
variable in question has dimensions and the subscript f refers to the corresponding 
property of the clear fluid. In view of this effective continuum description, the 
momentum balance for a flowing suspension can therefore be written in the usual form. 
But, since the flowing sediment has been observed to be very thin, the standard 
lubrication approximation can be invoked according to which the velocity component 
along the inclined plate is much larger than that perpendicular to it, and also, that any 
variations across the sediment layer are substantially greater than those along the 
longitudinal direction. In addition, any changes along the normal to the (x, y)-plane 
shown in figure 2 are neglected. With these approximations, the x-momentum and 
continuity equations, when non-dimensionalized using d and 11, as the characteristic 
length and velocity scales, reduce to 

P(9) = Pf 249 (1) 

F(#) = Ff A(#), (2) 

and 
au a8 -+- = 0, 
ax ay (4) 

where 12, = $ a " ' ( ~ ,  -Pf)/,if is the Stokes settling speed in the clear fluid of a single sphere 
of density p ,  and R, = P,Ct ii/,iif is the particle Reynolds number based on the relative 
motion between the particles and the fluid. Since R, is typically very small in most 
systems of practical interest, the right-hand-side term in equation (3) will henceforth be 
neglected within the sediment layer. In addition, as can be shown easily by applying the 
momentum balance in the y-direction, the pressure drop across the thin sediment layer 
is negligible to this order of approximation.? 

As mentioned earlier, the presence of shear in a concentrated suspension induces a 
migration of particles within the suspension which, along with the sedimentation flux 

t Strictly speaking, the continuity equation as given by (4) is incorrect because it does not account 
for changes in the density of the suspension that result from variations in $ within the sediment layer. 
It can easily be shown, however, from the work to be presented later in this paper that, for the system 
tested experimentally, the change in the relative density across the sediment layer never exceeded 
about lo%,  hence the simplified form of the continuity equation given above will be retained 
throughout the analysis. 
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FIGURE 2. A schematic description of sediment flow on an inclined plane. 

and the bulk flow, leads to a non-uniform particle concentration, 4. To determine this 
profile, however, it is necessary to examine, in addition to the momentum equation, the 
equation for the steady-state particle balance 

a4 a@ a a 
ax ay ay aY 

u-+v-+-(N, )+-(N, )  = 0, ( 5 )  

where Ng and N ,  denote, respectively, the dimensionless flux of particles due to gravity 
settling and that due to shear-induced diffusion in the y-direction. For the case of a 
monodispersed suspension of spheres, the former can be expressed as 

wheref(@) is the so-called hindrance function which accounts for the effects of the other 
particles on the sedimentation velocity. Once again, in view of the lubrication 
approximation, the flow can be treated as quasi-unidirectional with the term au/ay 
becoming the dominant component in the velocity gradient tensor. Thus, following the 
work of Leighton & Acrivos (1987b), the diffusive flux which accounts for shear- 
induced diffusion due to concentration as well as shear stress gradients can be 
expressed in terms of the dimensionless variables introduced earlier as 

where a and 1 are functions only of @ whose explicit form, taken in the present analysis, 
will be discussed in $3. 
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The appropriate boundary conditions at y = 0 are 

v = o  

and 

where the latter reflects the fact that the settling flux of the particles must be balanced 
by a corresponding shear-induced diffusive flux if the net particle flux into the wall is 
to vanish. Thus, according to this model, the existence of the shear-induced particle 
diffusion prevents the concentration of particles at the wall from reaching its maximum 
value where the suspension viscosity become infinite and thereby plays a crucial role 
in maintaining the flow of the sediment layer. 

These equations were first analysed by Nir & Acrivos (1990) for the case a = 0, i.e. 
in the absence of shear-induced diffusion due to gradients in the shear stress, subject 
to the additional boundary condition of no slip, i.e. u = 0 at y = 0. As was pointed out 
by these investigators, the boundary layer along the inclined plate can be viewed as 
consisting of two overlapping sublayers. Specifically, in the region adjacent to the 
inclined plate, termed the viscous sublayer, the viscous forces in equation (3) balance 
the force due to buoyancy, and the inertia terms are negligible to leading order. Beyond 
this viscous sublayer, however, the particle concentration essentially equals #, and, 
therefore, the inertial terms must be retained in equation (3). In addition, these 
investigators showed that the particle concentration must undergo a jump across a 
sharp interface separating these sublayers and that the entire variation of the particle 
volume fraction is confined within the viscous sublayer of finite thickness, 6 = i/d, 
termed the sediment layer, beyond which the buoyancy term in equation (3) vanishes 
identically. 

Unlike the previous work of Nir & Acrivos (1990), the present analysis will examine 
the consequences of having both a slip velocity at the inclined plate as well as a $: 0. 
But since neither of these modifications alters the structure of the governing equations, 
we would expect the gross features of the solution to remain unchanged. Thus we shall 
restrict our attention to the sediment layer mentioned above. 

We begin by replacing the no-slip boundary condition with 

u = aau/aY),,, at Y = 0, (10) 

where 6 is the slip coefficient, rendered dimensionless with a', which in general will 
depend on the microstructure of the suspension close to the wall; however, to a first 
approximation 5 will be taken to be a function only of the particle volume fraction at 
the wall. As was mentioned in the introduction, the existence of an effective slip 
velocity is due to the fact that, since the particles are of finite size, the continuum 
approximation fails within O(6) dittance from the wall. In addition, we note that since 
the strain rate at the wall is O(u,/6), where ub is a measure of the bulk velocity within 
the sediment layer, the slip velocity at t@e wall relative to uB is @[/a) on account of 
(10). Therefore, in view of the fact that 6 is a monotonically increasing function of x, 
we would expect the influence of the slip velocity to become progressively weaker far 
from the leading edge of the sediment layer and that the boundary condition (10) will 
reduce to the no-slip condition u = 0. Clearly, the domain of x within which partial slip 
at the plate may have a significant effect on the solution will depend strongly on the 
magnitude of the slip coefficient 6. 

Without loss of generality, let us then consider the region of x within which partial 
slip at the wall is important. First of all, on balancing the first and last terms of (5) with 
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Nd given by (7), we find on account also of (3) -with its right-hand-side term set equal 
to zero - and (lo), that Q d / x  - O(1) and u = O(Cc i), thereby implying that v = 0(1) 
from continuity, where Q denotes a value of the dimensionless slip coefficient 
characteristic of the particular problem being considered. Accordingly, i /Cc  - 
O ( ~ / c ) l / ~  and u / c  - O(x/c)'/',  which in turn, lead to the transformations 

Y = y / & ,  X = x / c ,  U = u / c  and V = v .  (1 1) 
In terms of these new variables, the system of equations then becomes 

au av 
+&5-$,)sin8 = O(R,Q), ax ay  

-+- = 0 

and 

where, in arriving at (13) from (5),  use has been made of (6), (7) and (12). In addition, 
the boundary conditions of partial slip, impermeability and zero particle flux at the 
wall, Y = 0, become 

u = q(au/ay),-,, v = o (14) 

and 

where q = [/cc, which in general would be an O( 1) quantity if Q is chosen properly. 
In order to complete the mathematical formulation of the problem, however, it is 

necessary to specify the remaining boundary conditions at the sediment-suspension 
interface. As pointed out earlier, within the sediment layer the viscous term in (3) 
balances the force due to buoyancy and inertia effects are negligible to the first order 
while, within the suspension region, the particle concentration is asymptotically equal 
to and the inertial term in (3) must be retained. Now, given that U- which on 
account of the relation preceding (1 1) is O ( P Z )  - must remain continuous across the 
sediment-suspension interface, it is easy to show that the ratio of the sediment layer 
thickness, 0(W2), to that of the inertial layer is O(ci/z Rk/2 P4). Hence, in view of the 
requirement that the shear stress also be continuous across this interface, it follows 
that, as the edge of the viscous layer is approached from below, 

where $d refers to the corresponding particle volume fraction within the sediment along 
this interface. Consequently, the longitudinal velocity component would be expected to 
increase monotonically from the wall to its maximum value at the edge of the sediment 
layer. 

It was also reported by Nir & Acrivos (1990) that the set of equations which apply 
within the viscous sublayer do not have a solution if the particle volume fraction is set 
equal to $ a  at the edge of this layer. These investigators were led to conclude therefore 
that the particle concentration $ must suffer a jump across the interface separating the 
concentrated sediment from the bulk of the suspension and that the entire variation in 
$ must be primarily confined within a viscous layer of finite thickness. One condition 
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which clearly must be satisfied at this interface is that the particle flux be continuous 
across it. Hence, if, in the transformed coordinates of (1 l), the edge of the viscous 
sublayer is denoted by Y = S ( X )  = S/Q = s"/6Cc, this becomes 

(17) 

where denotes the particle concentration as the interface is approached from below 
and U, and V, are the corresponding velocity components evaluated at Y = 6(X).  
Although (17) is obviously satisfied when $8 = $,, the governing equations within the 
viscous layer subject to this boundary condition do not have a solution for any choice 
of 6 and therefore some additional physical information or another boundary 
condition is needed if both $8 and S(X)  are to be determined. This is provided by the 
fact that (13) becomes singular at the edge of the viscous layer since (aU/aY), which 
is also proportional to the coefficient of the highest derivative in that equation, 
vanishes as Y + 6 ( X )  in view of (1 6). Hence, following Nir & Acrivos (1 990), it suffices 
to require that $ be regular for Y < S ( X )  or, more generally, that 

which when substituted into (13) leads to 

when the terms containing aU/aY are set equal to zero. In view of the flux matching 
condition across the interface, equation (17), the above equation can be rewritten as 

with 

which appears to be a part of a system of coupled set of PDEs plus boundary 
conditions that need to be solved numerically before the jump across the interface 
($a-$5) could be determined. In the limit of large X, i.e. in the absence of slip at the 
wall, however, it was shown by Nir & Acrivos (1990) that the particle concentration 
$ within the sediment layer attains a self-similar profile, which in turn reduces the 
differential equation (20) to a simple nonlinear algebraic equation 

W$,, $5,  0) = 0 (22) 
with the only unknown being $8, since the derivative of $8 with respect to X vanishes 
for this case. In fact, as will be shown later in $2.1, the condition d$,/dX = 0 turns out 
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FIGURE 3. Theoretically predicted particle volume fraction at the edge of the sediment layer, & as 
a function of c$#, for 0 = 30", 45" and 60". 

to be the only possibility consistent with the system of equations and boundary 
conditions given above. Thus, the jump in concentration ($&- $s) can be determined 
from (21) and (22) once and for all, given the values of $8 and 8. Figure 3 shows a 
typical solution of this jump condition for the particular choice of the functions A, a, 

and f reported in Q 3, cf. (42H45). 
The governing equations (12) and (13) along with the boundary conditions (14), (1 5), 

(16), (17) and (22) form then a complete set of partial differential equations, which is 
valid within the viscous sublayer for the entire range of X provided that the particle 
Reynolds number R, is sufficiently small for (16) to apply. Although, in general, this 
set needs to be solved numerically, it will be seen presently that the system admits a 
similarity solution for X < 1 in addition to the similarity solution found by Nix- & 
Acrivos (1990) for X S= 1. 

2.1. Analysis with partial slip (small-X solution) 
Since equations (12) and (13) are identical to those studied by Nir & Acrivos (1990) for 
the case of no slip, except for one extra term in (13) which accounts for the shear- 
induced migration of particles due to shear stress gradients, the solutions of the two 
sets would be expected to have many features in common. However, on account of the 
partial slip boundary condition (lo), the similarity solution derived by Nir & Acrivos 
(1990) no longer applies. Nevertheless, a closer examination of (12) and (13) suggests 
that these equations along with the boundary conditions are amenable to a leading- 
edge expansion 

u = A P  cos e + ~ ( 7 )  xcos e + O(P/~),\ 

4 = $(7) + w ? ' 2 ) 3  

(23) 

with 7 = Y/F'z .  Then, on substituting the above plus the expression for V, as obtained 
from the continuity equation, into the momentum and mass balance equations, one 
obtains, with the primes indicating differentiation with respect to 7, 

(24) (A($) G(7))' + %$ - $ 8 )  tan 8 = 0 
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where G = F", subject to the boundary conditions along the inclined plate at 7 = 0 

A = G(0) (slip condition) 
and 

/?($,) G(0) $' -a ($, - $s) tan 8 + $ofl$,)  = 0 (no-flux condition), (27) 
2WO) 

where $, denotes the unknown particle volume fraction adjacent to the surface of the 
inclined plate. It should be noted that, in arriving at (26) from (14), q has been taken 
as unity by choosing 5, = <($,). 

As mentioned earlier, the longitudinal velocity Attains its maximum value at the 
sediment-suspension interface, i.e. at the edge of the viscous layer of thickness S(X) = 
S,, A"/'. Therefore, 

Also, the flux of particles leaving the suspension should equal the particle flux entering 
the sediment layer, which requires that the total flux of particles across the curve Y = 
S ( X )  = So X1/' should remain the same on either side of the suspension-sediment 
interface. Thus, if once again the particle volume fraction in the sediment layer just 
below 7 = So is denoted by $8, which is known on account of (21) and (22), the flux 
matching condition at T,I = So becomes 

G(6,) = 0 at 11 = So. (28) 

which is clearly a special form of the general expression (17) derived earlier. Thus, for 
given values of $s, tl and $8, the above expression determines AS,. 

It is appropriate at this point to examine the validity of (22), i.e. the solution 
proposed earlier for (20). Suppose that 9 =k 0. But, in view of the expansion (23) in the 
limit as X+O, the longitudinal velocity and the transverse coordinate within the 
sediment layer scale as U - A?/' and Y - A?'', respectively, which in turn yields 

Xd$,/dX = O( 1) (30) 

from (20) since 9 is independent of X as the leading edge is approached. Clearly then 
since, according to the above expression, the first-order correction to $8 should be 
O(ln X) which does not vanish as X +  0, the only possibility for small X, and in fact for 
any X in view of the parabolic nature of the governing equations, is (22). 

The system of equations and boundary conditions thus obtained can be recast into 
a boundary value problem consisting of a single third-order ordinary differential 
equation plus one unknown parameter, A or So, and four boundary conditions. The 
latter are (26), (27), (28) together with the known values of $ = $8 at 4 = So and AS,. 
This system can be further simplified, however, by introducing the transformations 

.$=7/S0 and g =  G/S,  

in terms of which the governing equations are as before except for the fact that the 
unknown parameter A in (25) has been replaced with the known term AS,. Thus, with 
this change of notation, (24) and (25), subject to the boundary conditions (27) and (28) 
plus the known value of $& at .$ = 1, reduce to a simple third-order boundary value 



Sediment flow in tanks with inclined walls 49 

problem within the domain of integration 0 < 6 < 1.  Once such a solution is obtained, 
the sediment layer thickness parameter 6, can then be easily determined from the slip 
boundary condition (26) which becomes 

6, = (A8,/g(0))1'2 (32) 

in terms of the already known parameter AS, and the values of g(0) and $, as computed 
from the numerical integration. Furthermore, if we Pefined the sediment layer 
thickness relative to the particle radius as S(x) = c?,x'/~, then, following the 
transformations given by (1 l), we obtain 

i0 = with lc = [($,J (33) 

which in turn can be used to obtain the sediment layer thickness relative to the particle 
size at any point x radii beyond the leading edge provided that X << 1 .  

It should be noted here that the solution referred to above only yields the leading- 
order terms of the velocity and particle concentration expansions, which coincide with 
the exact solution only as X approaches zero. 

2.2.  Analysis with no-slip (large-X solution) 
As discussed earlier, following (lo), the slip boundary condition (10) or (14) reduces far 
away from the leading edge to 

U = O  at Y = O  for X+oo (34) 

since 6 increases monotonically with X. Consequently, on balancing the convection 
and diffusive terms in (13) and noting that, now, aU/aY - O(U/6) ,  we conclude 
that 6 - PI3. On the other hand, on neglecting the inertia terms in (12) we find that 
U - O(6') = O(X1I3). Therefore, as shown already by Nir & Acrivos (1990) for the 
special case a = 0, the governing equations (12) and (13), along with the boundary 
conditions equations (14), (15), (16) and (17), are amenable to a similarity solution of 
the type 

with 7 = Y/X113 and, as before, with the prime denoting differentiation with respect 
to 7. In view of this transformations, the governing equations reduce to 

u = ~ 2 / 3 ~ ' ( 4  cOS e, 4 = $(Ti, (35) 

(n($)F"(r))'+~($-$~)tane = 0 (36) 

subject to the boundary conditions at the inclined plate, 

and 
F = F ' = Q  at r = O  (38) 

/3($,) F"(0) # IT', -%!&! (4, - $s) tan 8+ $,,flq5,) = 0 (no-flux condition), (39) 
2440) 

where q5, refers as before to the unknown particle volume fraction next to the plate. 
On the other hand, the boundary conditions at the sediment-suspension interface 
Y = S(X) = 

F " = O  (40) 
now reduce to 

and 
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where the latter, reflecting the continuity of particle flux across the interface 7 = a,, is 
a special form of the general expression (17) derived earlier. Equation (41) serves then 
as the boundary condition for F a t  7 = 6, since the particle concentration is already 
known at this point from the solution of (22), for given values of q5s and 0. 

In contrast to the case with partial slip described earlier, these equations require the 
solution of a fifth-order boundary value problem together with a one-parameter search 
which arises because the sediment layer thickness a,, and therefore the domain of 
integration (0, {,), is not known apriori. It is also worth remarking that, in view of (1 1) 
and (35), both 6(X),  the sediment layer thickness relative to the particle radius a", as well 
as the two velocity components U and V are independent of ts, a,s X+= co which, of 
course, is as it should be. Consequently, far from the leading edge, 6(X)  += 6, x1I3 where 
6, is obtained as part of the numerical solution of the similarity equations given above. 

3. Theoretical predictions 
In order to solve the nonlinear set of ordinary differential equations described earlier 

in $2, explicit forms for the functions a, p, A andfare needed. Following Leighton & 
Acrivos (1986, 1987b), these will be chosen as 

4 4 )  = K,,P, (43) 

and p($) = &bz( 1 + ie8.8+), (44) 
where q5m, taken here as 0.58, denotes the maximum possible concentration of the 
particles in a flowing suspension and K,  is an order-one weak function of 9. Owing to 
the lack of experimental data for the system considered here, calculations were 
performed for K,, = 0.6, which is close to the value of K,  obtained experimentally by 
Leighton & Acrivos (1987b) for a channel flow. Moreover, since the hindrance 
function f appropriate to this problem is unavailable in the literature, the settling 
velocity of a sphere in the suspension undergoing shear will be set equal to its Stokes 
settling velocity in a fluid with viscosity p(#) and density p(#), thereby leading to the 
expression for the hindrance function 

(45) A#) = (1 - 99/44) 
which, in view of (42), vanishes as @ + 9,. This expression forfhas also been used by 
Leighton & Acrivos (1986) and by Schaflinger, Acrivos & Zhang (1990). Unlike the 
functions described above, however, very little information is available in the literature 
regarding the dependence of 5 on q50. Nevertheless, it can be easily shown (Kapoor 
1994) that a simple expression for [ can be obtained for concentrated suspensions by 
making use of an effective continuum model due to Acrivos & Chang (1986) and Chang 
& Acrivos (1987) which leads to the prediction that 6 should be proportional to 
[A(#,)- 11. This prediction was tested by means of an independent set of experiments 
in a Couette device (Jana, Kapoor & Acrivos 1995), and the data thereby obtained 
were found to follow the expression 

(46) 
for 0.45 < q50 < 0.52. 

Given these choices for the various functions described above, the system of 
equations discussed in $82.1 and 2.2 were solved first. Figure 3 depicts the solution of 

5 = W40) - 11 = $A(#,) 
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60": (a) the small-X asymptotic solution; (b) the large-X asymptotic solution. 

the jump condition (22) as a function of the feed particle concentration $8, for various 
angles of inclinations. Because (22) does not involve X, the change in the particle 
volume fraction across the interface (?I~-$~) is the same over the entire range of X 
under identical conditions. As discussed earlier, the value of g5d thus obtained is then 
used as a boundary condition along with (26), (27) and (28) to construct a solution to 
the governing equations (24) and (25) which apply for X 4 1. The particle volume 
fraction at the plate, $o, thereby computed is shown in figure 4(a) as a function of q5s 
for various angles of inclinations. The decrease in $o as B increases merely reflects the 
increase in the diffusive flux of the particles due to the higher shear rates. As shown in 
figure 4@), the corresponding solutions for large X also show a similar behaviour. On 
comparing figures 4(a) and 4(6) with the corresponding predictions for $8 shown in 
figure 3, it is apparent that for small angles of inclination and for intermediate to small 
values of $s, the variations of the particle volume fraction $ within the sediment layer 
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FIGURE 5. The sediment layer thickness parameter, as a function of q4#, for 0 = 300, 45" and 60": 
(a) So, for the small-X solution; (b) a,, for the large-X solution. 

are negligibly small. Thus, under these conditions the particle volume fraction 4 can be 
assumed to be uniform within the entire sediment layer and approximately equal to $ p  

In that case, the particle balance equation within the sediment layer given by (13) can 
be discarded and approximate but accurate expressions for the sediment layer 
thickness and for the corresponding velocity profile can be obtained for all values df 
X, as shown in the Appendix. 

Once (24) and (25) have been solved, [,,<q5,) can be calculated from (42) and (46) and 
the sediment layer thickness parameter 8, can be easily evaluated from (32) an$ (33). 
Shown in figure 5(a) is the effect of a change in the angle of inclination on 8, as a 
function of the feed particle concentration, while the variation of the corresponding 
thickness parameter 6, for the large-X solution is shown in figure 5(b). On comparing 
these two figures with that for the case of no slip and with a = 0 (Nir & Acrivos 1990), 
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FIGURE 6. The critical angle of inclination below which a steady motion of the sediment layer 
cannot exist, as a function of - , theory with slip; ---, theory without slip. 

it is seen that the inclusion of slip as well as diffusion due to gradients in the shear stress 
alters the qualitative nature of the sediment layer thickness profile in a major wa?, and 
that the puzzling result reported by Nir & Acrivos (1990) for a = 0, in which 6, was 
found to increase without bound as q58 -+ 0, is thereby eliminated. 

According to the effective continuum model adopted here, there exist two possible 
mechanisms by which the sediment layer thickness can approach zero in the limit 
#8 -+ 0. The first possibility occurs when the average concentration within the sediment 
layer remains close to q5m and the slip velocity at the inclined plate is an O(1) quantity. 
Physically this represents a plug of constant concentration slipping along the inclined 
plate. The second possibility is when the particle concentration close to the wall 
remains less than its average value within the sediment layer. But if the boundary 
condition (27) is examined closely, it becomes clear that, in the absence of shear- 
induced diffusion due to a gradjent in the shear stress, the particle volume fraction will 
always increase monotonically away from the wall to balance the gravitational particle 
flux. Therefore, within the framework of the model proposed by Nir & Acrivos (1990), 
resuspension due to a concentration gradient alone subject to the no-slip boundary 
condition at the wall can never lead to a sediment layer thickness which approaches 
zero as q58 --f 0. However, when a $: 0 the contribution due to the shear stress gradient 
term enhances the resuspension process which in turn reduces the average particle 
concentration within the sediment and leads to a relatively thinner sediment layer. In 
fact, for higher values of a, the gravitational flux and the diffusion flux due to a 
concentration gradient will act in the same direction in order to balance the diffusive 
flux due to the shear stress gradient. 

Figure 6 shows the domain within which a steady-state solution of the boundary 
layer equations will exist for the small-X and the large-X asymptotic solutions 
respectively, with the solid line indicating the location of the boundary for the small- 
X asymptotic solution at which & the particle concentration at the plate, reaches & 
and the sediment ceases to flow, while the dashed line refers to the corresponding 
predictions from the large-X asymptotic solution. 

The theoretical predictions presented above describe the flowing sediment layer 
either near the leading edge of the inclined plate or far downstream. But, in order to 
draw a meaningful comparison with the experiments and also to determine the range 
of applicability of these asymptotic solutions, it is necessary to obtain a complete 
numerical solution valid for all X. Clearly, the momentum and particle balance 
equations (12) and (13) along with the continuity equation are parabolic with X as a 
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FIGURE 7. The theoretically predicted sediment layer thickness s  ̂as a function of the distance x from 
the leading edge, both rendered dimensionless with the particle radius 6, together with the 
corresponding asymptotic expression for small x and for large x, for 9, = 9.6 % and 0 = 45". 

marching coordinate and can be solved by a number of numerical techniques. Here we 
chose the method of finite differences and began the integration at some small X where 
the leading-edge solution provided the appropriate initial condition. In addition, the 
parameter Q was taken as the value of c(:(90) from the small-X asymptotic solution. The 
specific details of the numerical technique employed are given elsewhere (Kapoor 
1994). A typical result of the numerical solution is shown in figur? 7, which depicts the 
variation with x of the dimensionless sediment layer thickness 8, for 9, = 9.6% and 
t9 = 45". The dashed lines in this figure refer to the asymptotic solutions at low as 
well as high X based on the analysis presented earl@ in g2.1 and 2.2. Clearly, the 
numerical computed sediment layer thickness profile S(x) is consistent with the results 
of the asymptotic analysis, and can be approximated by the simple interpolation 
formula 

where the thickness parameters &,, and cYa introduced earlier are the coefficients of the 
asymptotic expressions s  ̂= lo x1I2 and 6 = 6, x1I3 as X - t  0 and X - t  00, respectively. 
Together with the graphs presented in figures 5 (a) and 5 (b), this interpolation formula 
can be readily used to compute the sediment layer thickness 6 for intermediate ranges 
of x. 

4. Experimental investigation 
The complete characterization of the sediment layer requires the determination of its 

thickness profile, the particle velocity profile, and the corresponding particle 
concentration profile. The former is relatively easy to measure experimentally by 
means of a cathetometer or by employing a video imaging technique. Although, in 
principle, both methods require that a good optical contrast should exist between the 
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suspension and the sediment, in all cases the sediment layer thickness could be 
measured manually from a video image to within - 0.03 mm even though, as discussed 
below, the systems used in this study were optically transparent. 

Unlike the measurement of the sediment layer thickness, however, the determination 
of the particle velocity and concentration profiles within flowing concentrated 
suspensions presents a much more difficult challenge and various attempts were made 
over the years to develop, for this purpose, several non-intrusive experimental 
techniques. One of the earliest was described by Karnis, Goldsmith & Mason (1966), 
who employed cinematography to visualize the motion of tracer particles within the 
flow and thereby were able to estimate the particle velocity and the concentration 
profiles within concentrated suspensions flowing in a tube. Later on, more sophisticated 
techniques based on the Doppler effect phenomenon were developed by number of 
investigators to study flows of concentrated suspensions. Most of these methods, 
however, were restricted to the measurement of velocity profiles within such 
suspensions, For example, microwave Doppler anemometry (McMahon & Parker 
1975) and ultrasound Doppler anemometry (Kowalewski 1980) were developed to 
measure the velocity profiles within the highly concentrated suspensions, but both 
these methods fail to provide the spatial resolution needed for the present application. 
The well known laser Doppler velocimetry (LDA), which is capable of providing an 
extremely high spatial resolution compared to the other two even though it requires 
that the medium be optically transparent, was also employed (Nouri, Whitelaw & 
Yianneskis 1987) to measure particle velocities in relatively dilute suspensions with 
concentrations up to 14 YO, by matching the refractive index (RI) of the particles to that 
of the fluid. Since, in practice, it is extremely difficult to make a suspension completely 
transparent owing to the residual turbidity that arises from the slight mismatch in the 
refractive indices as well as the presence of impurities within the particles, the 
application of this technique to a particular system depends strongly on the degree of 
transparency that can be achieved by matching the refractive indices. This in turn 
determines the beam penetration distance within which the velocity could be measured 
for a given volume fraction of particles. 

Recently, however, Koh (1991) and Koh et al. (1994) have shown that, in 
addition to measuring the particle velocities, this technique can also be extended to 
yield particle concentration profiles in flowing concentrated suspensions by counting 
the number of scattering centres crossing the measuring volume. Clearly, this is 
possible only when each scattering centre gives rise to a distinct burst. This can be 
achieved by keeping the size of the measuring volume smaller than the particle size. 
Nevertheless, beyond a certain combination of particle volume fractions and beam 
penetration distances, the residual turbidity of the system increases and the quality of 
Doppler burst deteriorates significantly thereby rendering the processing of these 
signals extremely difficult. Specifically, for the system employed by Koh (1991), this 
limit was reached at an average volume fraction of 30 YO and with a beam penetration 
distance of around 50 particle diameters, at which point these investigators reported a 
large scatter in their velocity data, due to the low signal to noise ratio of the Doppler 
signal. In turn this made it impossible for them to obtain reliable particle concentration 
measurements under these conditions. In principle, these restrictions can be overcome 
by employing a technique based on the NMR imaging which was recently used by 
several investigators (Graham et al. 1991; Sinton & Chow 1991) to measure the 
velocity as well as concentration profiles within concentrated suspensions, but, owing 
to the high capital cost of the NMR equipment, this method does not provide a viable 
alternative for the present application. 
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FIGURE 8. Schematic description of the experimental set-up. A :  video camera, B: PM tube 
connected to a BSA, C: low aspect ratio settling vessel, D :  laser Doppler anemometer, E: x,y,z 
table. 

Instead, by employing an advanced burst processing system and a better optical 
configuration in addition to matching the refractive index of the particles to that of the 
fluid, we were able to extend the LDA technique and thereby measure the particle 
velocities within highly concentrated sediment layers having particle volume fractions 
as high as 50% and at locations as far as 100 particle diameters inside the flow. 
Unfortunately, under these conditions the Doppler burst does not remain distinct and 
the validation rate through the processor depends significantly on the signal to noise 
ratio of the signal and thereby on the medium through which the incident beams and 
the scattered signals are traversing. It was not possible, therefore, to compare the 
number of scattering centres passing through the measuring volume at two different 
locations and thereby obtain meaningful concentration data from these measurements. 
We also note that the determination of the particle concentration using this technique 
under such extreme conditions requires that a careful study be made of the effect of the 
optical turbidity, which arises from the slight mismatch in the refractive indices on the 
Doppler bursts, and, more specifically, that the one to one correspondence between the 
particles crossing the measuring volume and the signals received at the PM tube be first 
established . 

In addition, and in contrast to the case of a flowing pure fluid, the adaptation of 
LDA to the measurement of velocities in concentrated suspensions gives rise to several 
sources of error. First of all, as mentioned earlier, at high particle concentrations, the 
existence of many particles in the probe volume introduces noise into the scattered 
signal and may result in erroneous velocity readings. This error can be reduced by 
making the measuring volume nearly the same as that of the particle and can also be 
minimised to some extent by employing an appropriate signal processing technique 
which discards signals from multiple particles. The second source of error in the 
measurement of the velocity is due to the changes in the refractive index of the medium 
encountered by the laser beam. Thus, the resulting wobble of the beam can introduce 
noise into the velocity signal akin to fictitious turbulence. This source of error, 
however, cannot be removed completely since, in practice, a small amount of mismatch 
always exists even when the refractive indices of the fluid and of the particles are 
matched in a suspension. 
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Turpentine 
Tetraline 
Suspending fluid, mixture of 62.9 % 

Particles, Acrylic, average diameter 
turpentine and 37.1 % tetralin 

90 pm (variance = f 8 pm) 

Density Viscosity Refractive index 
(gm cm-3) (CP) at 24 "C 

0.85 1.43 1.4636 
0.97 2.01 1 S388 
0.89 1.47 1.4908 

1.491 1.18 - 

TABLE 1. Physical properties of the fluid and particles used 

4.1. Experimental set-up 
The experimental set-up used in the present investigation and shown schematically in 
figure 8 consisted of a settling vessel of dimensions 25 in. (L)  x 1 in. (W) x 2.5 in. (H), 
which was connected to the flow system mounted on a pivoting stand so that it could 
be rotated to the desired angle of inclination. A laser Doppler anemometer and a video 
camera for measuring the particle velocities and the sediment layer thickness 
respectively, with a resolution of 10 pm in all three directions, was attached to an x, 
y, z table which was fixed to the same pivoting shaft that was holding the settling vessel. 

As mentioned earlier, the application of LDA to concentrated suspensions requires 
that the suspension be optically transparent, which in general can be achieved by 
matching the refractive indices of particles to that of the fluid. There are of course 
several factors which affect the optical quality of the suspensions, namely the refractive 
indices of the two phases, the optical quality of the particles and the impurities and 
non-uniformity present in the solid phase. In addition, the proposed theoretical model 
also requires that the particles be spherical and monodisperse. These restrictions posed 
a major constraint in choosing the appropriate fluid-particle system for the 
experiments. However, in the present case, a careful inspection of a variety of polymer 
and resin samples from different manufacturers led us to choose a class of PMMA 
beads (CA603) manufactured by ICI, which were found to contain only a very small 
number of air bubbles and hence were most suited for our application. These particles 
were spherical but, owing to their wide size distribution, had to be sieved. The density 
of these particles was found to be 1.178 gm cm+. For PMMA, the refractive index is 
approximately 1.491 ; however, the actual RI of the particles used in the experiments, 
an important parameter for the refractive index matching, was not available from the 
manufacturer. Following Koh (1991), who presented a number of methods then 
available for RI matching, a systematic procedure was adopted for matching the 
refractive index of particles with that of the suspending fluid which did not require that 
the RI of the particles be known prior to matching. Clearly, this is possible in practice 
only when the suspending fluid is prepared by mixing two or more fluids so that its 
refractive index can be changed by varying its composition. A mixture of turpentine 
and tetraline was therefore chosen and its proper composition was arrived at by 
maximizing the transmittance of the suspension. The physical properties of the 
fluid-particle system used are given in table 1. Moreover, since the refractive indices of 
both phases depend strongly on the temperature, it was necessary that the RI matching 
as well as all the other experiments be performed at the same temperature. As pointed 
out by Koh (1991) and also found during the course of our experiments, it is essential 
that temperature control be maintained; however, in practice, control to within 1 "C 
was found to be sufficient for our purposes. 
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FIGURE 9. Schematic representation of the flow system. A: flow vessel, B: mixing tank, C: centrifugal 
pump, D: peristaltic pump, E : concentration measurement system, F: flow meter, G : temperature- 
controlled bath; T: digital thermometer. 

The details of the flow system are shown schematically in figure 9. The overflow 
product and the sediment that were withdrawn from the vessel were eventually remixed 
in the mixing chamber which was equipped with a mechanical stirrer and cooling coils 
to maintain a constant temperature. The temperature of the suspension in the mixing 
tank was monitored by means of a thermistor probe and was controlled manually by 
changing the set point of the temperature of the water within the circulator bath which 
circulated through the cooling coils of the mixing tank. The rate of the overflow 
product at the top of the vessel was measured using a flowmeter. The volumetric 
concentration of the particles in the feed was determined by measuring, using a 
photodiode, the transmittance of a laser beam through the suspension flowing in a cell. 
In addition, the particle volume fraction within the suspension region of the flow 
channel was checked at several locations by the same technique and was found to 
match the inlet concentration to within 1 YO. 

The laser Doppler anemometer used for the particle velocity measurements was a 
one-dimensional system equipped with a 15 mW He-Ne laser and a Bragg cell. It was 
used in the off-axis forward scattering mode in order to maximize the signal to noise 
ratio of the scattered signal. The optics for this system were obtained from Dantec 
Electronics and were chosen in such a way that the measuring volume was smaller than 
the size of suspending particles. Thus, in the present work, by means of a beam 
expander and a front lens of focal length 80 mm, we constructed a measuring volume 
of size d, = 41 pm, d, = 41 pm and dz = 249 pm. In addition, a set of close-up lenses 
connected to a photomultipler (PM) tube was placed in the forward direction, as 
shown in figure 8 and was used for focusing the collected light into a PM tube through 
a pinhole. The output of this PM tube was connected to an on-line processor with a 
built-in FFT chip, developed by Dantec and called a Burst Spectrum Analyzer (BSA). 
This BSA employed an advanced burst detection scheme to accurately find and 
validate the burst and was capable of processing signals with a signal to noise ratio as 
low as -6dB. A personal computer was interfaced by IEEE488 with the BSA to 
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obtain the data, which consisted of the velocity, the transit time and the arrival time 
of each burst processed. At each point one thousand bursts were processed and the 
average velocity was then calculated by taking the arithmetic mean of these bursts. In 
addition, in few cases, the transit times were used to weigh these averages, but the 
difference between these two sets were found to be negligible. The data were stored in 
the computer and were analysed at the end of an experiment to obtain the particle 
velocity distribution at each point. 

In addition, a video system, consisting of a video camera (Sony XC77RR) along with 
a VCR (Panasonic AG1960) and a Sony monitor, was attached to the experimental 
system in order to visually observe and measure the thickness of the steady flowing 
sediment layer. The latter was done manually from the monitor which reproduced the 
image of the sediment layer magnified 35 times its actual size. 

5. Comparison with the theory 
Visual observations of the flowing sediment layer clearly indicated a sharp change 

in the contrast around the sediment-suspension interface, thereby confirming the 
theoretical prediction about the jump in particle concentration across the suspension- 
sediment interface. As described earlier in the previous section, this feature of the 
sediment layer made it possible to measure the sediment layer thickness by means 
of video imaging. Furthermore, in order to verify the second quantitative prediction of 
the model, we measured the velocity of the particles within the sediment layer at 
various x-positions, and the y-locations at which the longitudinal velocities reached 
their maximum values were found to almost coincide with the corresponding locations 
where the sharp change in the visual contrast was observed. 

In the present work, experiments were performed for four feed particle concen- 
trations and for two angles of inclination, and the measured sediment layer thickness 
profiles plus some typical particle velocity profiles for each of these cases were 
compared with the corresponding theoretical predictions based on the theory presented 
in @2 and 3. Figures lO(a)-lO(c) show some typical experimentally measured sediment 
layer thickness profiles along with the corresponding theoretical predictions which are 
depicted as solid lines. Clearly, there is a good agreement between the theory and 
experiments. It should be noted that most of the experimental data were restricted to 
values of I < 230 mm, primarily because the visual identification of the interface 
became difficult at larger 2 due to the high velocity of the particles. The corresponding 
predictions of the original no-slip theory by Nir & Acrivos (1990) are not shown in 
these figures because they exceeded the measured thicknesses by more than 150 YO. 

The particle velocity profiles for various feed particle concentrations and 2-locations 
are shown in figures ll(a)-ll(e) which also contain plots of the corresponding 
theoretical predictions for the particle concentration profile. Unfortunately, owing to 
the lack of any experimental measurements, the latter could not be compared with 
experiments. A solid line in these plots represents the theoretically predicted profiles, 
while the dashed line refers to the corresponding predictions based on the no-slip 
theory of Nir & Acrivos (1 990) modified to include the effects of shear-induced diffusion 
due to shear stress gradients. As described earlier, on comparing the two sets of figures 
10 and 11 (u-c), it seems that, as predicted theoretically, the location of the maximum 
in the measured velocity profile almost coincides with the location of the 
sediment-suspension interface as determined optically. Also, the velocity profiles in 
these figures clearly point to the existence of a slip velocity close to the inclined plate, 
which is consistent with visual observations that were made during the course of our 
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experiments. It was not possible, however, to measure particle velocities any closer 
than 0.25 mm from the plate due to saturation of the PM tube current caused by the 
presence of excessive reflections from the wall. In fact, this is one of the reasons which 
contributed to the large scatter in the particle velocities measured close to the wall. 
Furthermore, the low values of these velocities also made it difficult to separate the 
actual signal from the noise that could have been present due to external vibrations and 
the optical turbidity of the medium. Therefore, in order to avoid these spurious signals, 
most of the velocity profiles were measured at a distance far away from the origin, i.e. 
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FIGURE 11 (a, 6). For caption see page 63. 

2 > 180 m, where the sediment layer was relatively thick and the particle velocities 
relatively high. It should be noted at this point that, although all the velocity data 
shown in figure 11 (u-e) correspond to particle velocities measured within the sediment 
layer, owing to the relatively small magnitude of the settling velocity and therefore of 
the slip velocity of the particles relative to the bulk, the data also depict, for all practical 
purposes, the bulk velocities within the sediment layer. 

Furthermore, the velocity measurements shown in figure 11 (a-e) clearly indicate that 
a strong velocity gradient exists within the sediment layer, especially for higher values of 
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the feed particle concentration and large angles of inclination. Another interesting 
feature of these profiles is that almost all the plots are linear over the entire range of 
the sediment layer except for a small region close to the interface where the velocity 
attains its maximum value. In view of the momentum balance equation (12), this 
suggests the existence of a non-uniform particle concentration distribution within the 
sediment layer with concentration gradients of the order (dh/d$)-l. Clearly, this is very 
small for most of the cases shown in these figures since $ is close to under these 
conditions and provides further evidence that the approximate solution to be presented 
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in the Appendix should give results in close agreement with those arrived at via the 
numerical solution of the full model equations. 

The main conclusion to be drawn from the foregoing comparison is that there exists, 
in most cases, surprisingly close agreement between experiments and theory, especially 
considering that the latter did not entail the use of any adjustable parameters. 
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Appendix 
In this Appendix we shall present approximate expressions for the sediment layer 

thickness 6(x) and for the longitudinal velocity profile, both transformed according to 
(ll), when the particle volume fraction within this layer is set equal to q58. To begin 
with, on account of this approximation, the velocity profile within the sediment layer 
can be easily obtained from the momentum balance equation (12) subject to the 
boundary conditions (14) and (16), as 



64 B. Kapoor and A .  Acrivos 

80 8, 

From the small-X From the large-X 
asymptotic From equation asymptotic From equation 

4 s  * solution (A 3) solution (A 4) 
3.162 2.719 3.099 2.812 

f 3 O  1.463 1.998 1.863 2.289 
0.735 1.49 1 1.179 1.884 
3.61 1 2.628 3.385 2.748 
1.917 2.076 2.208 2.349 
1.086 1.661 1.529 2.024 
4.133 2.573 3.703 2.709 

0.15 2.293 2.094 2.505 2.362 
1.365 1.737 1.779 2.085 
4.910 2.590 4.155 2.723 
2.743 2.131 2.817 2.390 
1.663 1.800 2.026 2.135 
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TABLE 2. Comparison between the asymptotic solutions described in 82 and the approximate 

solution shown in the Appendix 

where, as before 6(X)  represents the sediment layer thickness at any location X. In 
addition, in applying (14), y has been set equal to unity by choosing 6 = cc(#J. But, in 
view of the above expression for U and the flux matching condition (1 7) at the interface 
Y = S(X) ,  one obtains that 

where use has been made of the continuity equation to obtain the expression for V,. 
Clearly, when 6 -4 3, (A 2) reduces to 

consistent with the form of the small-X asymptotic solution. On the other hand, when 
6 9  3, 

which again has the correct dependence on X as the large X-solution. Table 2 compares 
the coefficients 6, and 6, of the asymptotic expressions 6 = 6, X1lz and S = 6, X1l3 for 
X+ 0 and X+ co, respectively, as obtained from the numerical solution of the 
similarity equations derived in 42, to those computed using (A 3) and (A 4). Clearly, 
there is fair agreement between these two solutions, especially at the higher values of 
g5s and the higher angles of inclination. 

It is important to emphasize that this approximate analysis in no way discards the 
influence of shear-induced particle diffusion since the expression for 6 ( X )  given by 
(A 3) and (A 4) both involve the coefficients a($) and /?(#), either explicitly as in the 
case of a or implicitly through the dependence of on these two functions, cf. (21) and 
(22). Rather, as a consequence of the assumption of a uniform particle volume fraction 
d8, a simple expression for the longitudinal velocity profile could be derived via (12) 
which, on account of (179, led directly to (A 2). Thus, the role played by shear-induced 



Sediment flow in tanks with inclined walls 65 

particle diffusion remains a key ingredient of both the more exact as well as the 
approximate analysis presented above. 
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